New Operational Matrix For Shifted Legendre Polynomials and Fractional Differential Equations With Variable Coefficients
نویسندگان
چکیده
This paper is devoted to study a computation scheme to approximate solution of fractional differential equations(FDEs) and coupled system of FDEs with variable coefficients. We study some interesting properties of shifted Legendre polynomials and develop a new operational matrix. The new matrix is used along with some previously derived results to provide a theoretical treatment to approximate the solution of a generalized class of FDEs with variable coefficients. The new method have ability to convert fractional order differential equations having variable coefficients to system of easily solvable algebraic equations. We gave some details to show the convergence of the scheme. The efficiency and applicability of the method is shown by solving some test problems. To show high accuracy of proposed method we compare out results with 1
منابع مشابه
A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative
The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملFractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions
In this manuscript a new method is introduced for solving fractional differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use fractional-order Legendre wavelets and operational matrix of fractional-order integration. First the fractional-order Legendre wavelets (FLWs) are presented. Then a family of piecewise functions is proposed, based on whi...
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کاملStudy on multi-order fractional differential equations via operational matrix of hybrid basis functions
In this paper we apply hybrid functions of general block-pulse functions and Legendre polynomials for solving linear and nonlinear multi-order fractional differential equations (FDEs). Our approach is based on incorporating operational matrices of FDEs with hybrid functions that reduces the FDEs problems to the solution of algebraic systems. Error estimate that verifies a converge...
متن کامل